
Two-dimensional neutral Coulomb gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 2087

(http://iopscience.iop.org/0305-4470/18/11/029)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 18 (1985) 2087-2094. Printed in Great Britain 

Two-dimensional neutral Coulomb gas 

Prabodh Shukla 
Physics Department, North Eastern Hill University, Shillong 793003, India 

Received 31 July 1984 

Abstract. The problem of the two-dimensional neutral Coulomb gas is analysed in two 
separate approximations: the one-atom approximation at low temperatures and the 
Thomas-Fermi approximation at high temperatures. A possible connection between the 
Kosterlitz-Thouless transition and the thermal ionisation of a single atom is discussed. 
An expression for the position dependence of the dielectric constant of the gas is obtained 
in the Thomas-Fermi approximation. 

1. Introduction 

The two-dimensional neutral Coulomb gas has been studied by several authors 
[l-41. The main point of interest is the unusual nature of the phase transition in 
this system. Usually, the correlations between fluctuations at two different points in 
a system decay rapidly exponentially with the spatial distance between the points, 
except at the critical point of the system where the correlations decay slowly algebrai- 
cally. In the two-dimensional Coulomb gas the correlations decay slowly algebraically 
over an entire range of temperatures from T = 0 to T = T,. In this sense, the whole 
range of temperatures, from T = 0 to T = T,, may be thought of as a line of critical 
points of the two-dimensional Coulomb gas. The critical exponents, however, depend 
on the temperature and are therefore not universal. At the end of the line of critical 
points, a phase transition takes place into a new phase where the correlations decay 
rapidly exponentially with distance. Similar behaviour also arises in many other cases, 
such as the two-dimensional X Y  model of ferromagnetism, the roughening model 
and the one-dimensional Fermi gas. All these models can be related to the two- 
dimensional Coulomb gas [ 5 ] .  

The existing work on the two-dimensional Coulomb gas and other related systems 
is largely in the classical approximation. We shall show in this paper that some quantum 
effects can be incorporated in the theory without increasing the mathematical com- 
plexity. The quantum effects do not alter the essential physics of the problem but give 
us a different perspective of the problem. In the limit of low density and low tem- 
perature, the neutral Coulomb gas can be approximated by a gas of hydrogen atoms 
(i.e. bound pairs of equal and opposite charges) with negligible interaction between 
the atoms. In this limit the properties of the gas can be related simply to the properties 
of an individual atom. We shall see that there is a basic difference between the 
three-dimensional hydrogen atom and the two-dimensional hydrogen atom, which lies 
at the heart of the distinct thermal behaviour of the two- and the three-dimensional 
Coulomb gases. A three-dimensional hydrogen atom, in thermal equilibrium in an 
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infinite volume, is completely ionised (i.e. ionised with probability 1) at any finite 
temperature [6]. A two-dimensional hydrogen atom, as we shall see below, in similar 
circumstances is completely ionised only above a critical temperature T,. There are 
several similarities between the Kosterlitz-Thouless transition [2] in the two- 
dimensional Coulomb gas and the ionisation of the two-dimensional hydrogen atom. 
Though there are no true scattering states for a pair of opposite charges in two 
dimensions, above the thermal ionisation temperature the charges may be considered 
effectively free because the probability for the pair to exist in any definite state is zero. 
It is also clear that above the thermal ionisation temperature the many-body effects 
will become so important that the properties of even a dilute gas may not be simply 
related to just a pair of charges. In this temperature regime we shall show that the 
Thomas-Fermi approximation [7] yields a simple and elegant expression for the 
dielectric scaling function of the Coulomb gas. 

The relationship between the dilute gas at low temperatures and the hydrogen atom 
makes it intuitively simple to understand the unusual properties of the two-dimensional 
Coulomb gas. In two dimensions the electrostatic potential energy of a pair of charges 
varies logarithmically with the spatial separation between the charges. The thermody- 
namic probability, i.e. the Boltzmann factor for finding a pair of charges a distance r 
apart, varies slowly algebraically with r, unlike in the three-dimensional case where it 
vanishes rapidly exponentially. The algebraic or power law decay of the thermodynamic 
probability is borne out by calculations which take into account not only the potential 
energy of the charges but also their kinetic energy. Thus algebraic decays are the rule 
rather than the exception in two-dimensional Coulomb systems. What is suiprising is 
that there exists a critical temperature above which the behaviour of the system changes 
over to the exponential form. The exponential form has to be understood in terms of 
the thermal ionisation of the atom and the many-body effects which come into play 
above the ionisation temperature. 

This paper is organised as follows. Section 2 contains a brief review of the classic 
Kosterlitz-Thouless theory. In 0 3, we calculate the partition function of a two- 
dimensional hydrogen atom in the WKB approximation, and show that it diverges above 
a critical temperature. This is interpreted as the thermal ionisation of the atom. The 
moments of the charge density distribution in the atom as well as their thermal averages 
are also calculated in the WKB and s-wave approximation. In this approximation, the 
thermal average of each moment diverges at a distinct temperature. The physical 
significance of this result is discussed. In 0 4, we consider a neutral Coulomb gas 
above the thermal ionisation temperature and obtain the dielectric scaling function in 
the Thomas-Fermi approximation. The question of the screening length of the two- 
dimensional gas and its independence from the density of the gas is also discussed. 
Section 5 contains a summary and some concluding remarks. 

2. Kosterlitz-Thouless theory 

Kosterlitz and Thouless [2] were among the first to elucidate the thermal behaviour 
of the two-dimensional neutral Coulomb gas. Subsequently, several authors [8- 101 
have studied the problem, and as a result of their work the physical content of the 
Kosterlitz-Thouless theory has become clearer, and the mathematical steps have also 
become simplified. The main features of the Kosterlitz-Thouless theory can now be 
summarised as follows. 



Two-dimensional neutral Coulomb gas 2089 

Consider a neutral Coulomb gas of rather low density. At low temperatures the 
gas consists of bound dipolar pairs of equal and opposite charges e and -e. The 
potential energy of a dipole pair of separation r is 

where ro is an arbitrary constant and E(r) is the dielectric constant of the gas. The 
dielectric constant depends upon the separation r because of the screening effects of 
other dipoles in the system. The dipoles in the system occur in various states of thermal 
excitation and, therefore, with various separations r. Let n (  r )  be the density of dipoles 
of separation r: 

n ( r )  = n i  exp(-pV(r)) (2.2) 

where n i  is a normalisation constant and p = l/kBT. Let p ( r )  be the polarisability of 
the dipole: 

p ( r )  =$e2r2. (2.3) 

Now the susceptibility of a circular area of radius r of the neutral Coulomb gas can 
be calculated by summing over the polarisabilities of all pairs which lie in this area: 

, y ( r ) =  n( r ’ )p ( r ’ )2ddr ’ .  (2.4) 

According to the dielectric theory, the susceptibility is related to the dielectric constant 
by the equation 

E ( r ) =  1+4r,y(r) .  ( 2 . 5 )  

Equation (2.5) gives an integral equation for E ( r )  which contains the essential physics 
of the problem. The equation for &( r )  can be put in a simple form if we define 

(2.6) 

After a little algebra, equation (2.5) can be rewritten in the form of two coupled 
differential equations: 

y (  r )  = nor2 exp( -$I V( r ) ) .  

dE 2 2  2 r - = h  e py . 
d r  

(2.7) 

Equations (2.7) and (2.8) are subject to the initial conditions: 

E(rO)=l  Y ( r o )  = nor:. (2.9) 

As we have already pointed out, ro is an arbitrary constant which enters the expression 
for the two-dimensional Coulomb potential. In writing the initial conditions (2.9), we 
have taken ro to represent the smallest distance of physical interest in the problem so 
that at this distance the screening effect of other charges in the system is zero. With 
these initial conditions 

(2.10) 
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(2.11) 

The above equations reveal that the solutions of (2.7) and (2.8) will fall into two 
categories. If k ,T>ae2 ,  then y ( r )  will increase with increasing r, and so will & ( I ) .  

Eventually, as r goes to infinity, E ( r )  will also go to infinity. If, on the other hand, 
kB T < +e2,  then y will decrease with increasing r, and E (  r )  will also decrease. In this 
case the rate at which E (  r )  decreases as compared with y (  r )  is important, and numerical 
solutions show that as r goes to infinity, E ( r )  approaches a constant value between 
zero and :e2 depending upon y ( r o ) .  A finite value of E ( r )  as r goes to infinity means 
that the gas is an insulator, while an infinite value of E ( r )  as r goes to infinity means 
that the gas is a conductor. The transition from an insulator phase below k,Tc=:e2  
to a conductor above this temperature is the Kosterlitz-Thouless transition. It should 
be noted that, at the starting point of the above analysis, the Coulomb gas was visualised 
as a dilute assembly of dipolar pairs of charges of varying sizes. A self-consistent 
equation for the dielectric constant of the system was obtained by considering the 
polarisation effects of larger dipoles on the smaller dipoles. There are several approxi- 
mations inherent in such an approach. The physical picture of the system on which 
the mathematical approximations are based deteriorates as the temperature increases 
and the dipoles begins to dissociate. I t  is quite difficult to solve the problem without 
making any approximations at all but in the following we study the low-temperature 
and high-temperature phases of the Coulomb gas separately in a somewhat different 
set of approximations. As explained in 9 1, the properties of a sufficiently dilute gas 
at low temperatures may be related to the properties of an individual two-dimensional 
atom. In the next section we therefore study the quantum mechanics and the thermal 
behaviour of a two-dimensional atom in some detail. 

3. Two-dimensional atom and thermal ionisation 

The bound states of a pair of charges e and - e  in two dimensions are described by 
the Schrodinger equation: 

where p is the reduced mass of the two charges, r and 6 are the polar coordinates of 
the vector joining the two charges. Equation (3.1) can be easily separated into r and 
8 parts. The solutions are of the form: 

(3.2) + ( r ,  e)  = R ( r )  exp(i im0) m =0,  1,2,. . . 
where R ( r )  satisfies the equation: 

Equation (3.3) can also be rewritten into a slightly more convenient form by transform- 
ing the independent variable from r to t = In( r /  ro).  We get 

(3.4) 
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Equation (3.4) cannot be solved exactly. However, it is in a form to which the WKB 

approximately (see, for example, [ 111) can be applied readily. The energy eigenvalues 
are given by the formula: 

Inb ( $ ( E  - e2t)roe ' " -m2)  d t = ( n + i ) r r  (3.5) 

where n = 0, 1 ,2 ,  . . . , and a and b are the classical turning points given by the zeros 
of the integrand. The case of circularly symmetric s waves, i.e. m =0,  is particularly 
simple. In this case the classical turning points are f = --CO and t = E / e 2 .  The energy 
eigenvalues of the s waves are given by the WKB result: 

E,,,=o = e* 1n[(2n + l )pO]  (3.6) 
where Po = Ro/ ro, Ro = ( 7rh2/2pe2)'/*. 

Equation (3.6) can be derived easily from (3.5). The case of non-zero m is somewhat 
difficult, even in the W K B  approximation. It may be handled following the method of 
Quigg and Rosner [12]. If we substitute R( r )  = u(r)/r"2 in equation (3.3), the resulting 
equation for u (  r )  becomes identical with the one analysed by Quigg and Rosner. They 
express the logarithmic potential as a limiting case of a power law potential: 

(3.7) 

The above identity holds for all finite values of r, but its use in the region of vanishing 
r constitutes some error. Quigg and Rosner have solved the equation for u ( r )  for all 
values of v, positive and negative, in the W K B  approximation. They find that the limit 
v = 0 can be taken without any problem. Furthermore, v approaching zero from the 
positive side and v approaching zero from the negative side give the same result: 

E,,,, = e* 1n[(2n + m + l )pO]  ( n = 0 , 1 , 2  , . . .  ; m = 0 , 1 , 2  , . . .  ). (3.8) 

Equation (3.8) may be rewritten as 

E,, = e2 ln[ppol p = l , 2 , 3  , . . . .  (3.9) 

The partition function Z of a two-dimensional hydrogen atom in thermal equilibrium 
at temperature T can now be easily evaluated: 

Z = U,, exp( - E,,/ kB T )  
P 

(3.10) 

where U,, denotes the degeneracy of the level E,,; D,, = $ ( p +  1) if p is odd and  
D,, = i( p + 2) if p is even. After some algebra, we obtain 

z=' 2 ~ 0  - K  [ [ ( K  - 1) + (1 - 2 - K  K ) I  (3.11) 

where K = eZ/k,T, and 5 denotes the Riemann zeta function [13]. The partition 
function diverges for K < 2 or k,T > ;e2. The probability for an  atom in thermal 
equilibrium at a temperature T to exist in the state E,, is exp(-E,/k,T)/Z. Thus the 
divergence of 2 means that the atom has zero probability to be in any definite state, 
or in other words the atom is ionised. This result is strictly correct for a single atom 
in an infinite volume. We may take it as a useful approximation for the thermal 
behaviour of atoms in a dilute gas. The reason why this result is not strictly true for 
the gas is the following. In evaluating the partition function of a gas, we can use the 
eigenstates of a free atom only if their extension is less than the mean distance between 
the atoms. Eigenstates of greater extension can not be used because these overlap 
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other atoms and  are modified by these atoms. Therefore, for the correct evaluation of 
the partition function of even a dilute gas, the interactions among atoms have to be 
taken into account. However, for understanding the thermal behaviour of the two- 
dimensional gas, the approximation in which interactions among atoms are altogether 
omitted appears useful in view of its simplicity. 

The Kosterlitz-Thouless transition is marked by the divergence of the susceptibility 
of the gas at the transition temperature. In order to see if this effect can be seen in a 
one-atom approximation, it is necessary to calculate the thermal expectations of the 
moments of the charge density distribution of the atom. The electric field couples to 
the first moment of the charge density distribution, and  divergent electric susceptibility 
implies that thermal expectation of the first moment should diverge at a critical 
temperature. For simplicity, we calculate the moments and  their thermal averages only 
for m = 0 states in the WKB approximation. The effects we are looking for are already 
present in these states, and  the inclusion of m # 0 states is not expected to make any 
qualitative change in the following discussion. 

The WKB expressions for the expectation value of the kth moment in the nth energy 
state, and for the thermal average of the kth moment, are, respectively, 

and 

n 

We find for s waves 

( r k ) ,  =(k+ l ) -1 /2 [Ro(2n+l ) ]k  

( r k ) T =  Ri(k+l ) -1’2p ,K(1  - 2 k - K ) 5 ( K  - k).  
and  

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Equation (3.15) shows that ( r k ) T  diverges unless k B T <  e 2 / ( k +  1). Thus not only the 
thermal average of the first moment diverges but all other moments also diverge at 
distinct temperatures. The moments of the charge density distribution couple to various 
gradients of the external electric field applied to the system. It follows from (3.15) 
that the two-dimensional atom undergoes a series of phase transitions at critical 
temperatures given by kBT: = e2/(k + l ) ,  k = 1,2 ,  . . . , which correspond to divergent 
susceptibilities with respect to the gradients of the externally applied inhomogeneous 
electric field. This result will remain qualitatively true even when m # 0 states are 
taken into account. However, the inclusion of m # 0 states will systematically suppress 
all the transition temperatures. 

4. Thomas-Fermi approximation 

Above the thermal ionisation temperature, the atoms dissociate and  the charges become 
itinerant. In  this case, the one-atom approximation is no longer useful. Instead the 
problem becomes that of an  electron gas of a given density superimposed on a uniform 
background of positive charge of the same density. It is more appropriate now to 
label the electrons by wavevectors, rather than stationary states of a single atom. Let 
n ( r ,  0 )  and 4 ( r ,  0 )  denote, respectively, the number density of electrons and the 
potential field at the point ( r ,  0)  referred to some conveniently chosen origin in the 
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electron gas. The local potential energy of the electron is -e&(r, e ) ,  and its kinetic 
energy is h 2 k $ / 2 p  where h k F  is the local Fermi momentum of the electron. The Fermi 
momentum of the electron is related to the number density through the relation 

k ? , = 2 m ( r ,  e ) .  ( 4 . 1 )  

Thus the local kinetic energy is m ( r ,  B)h2 /p .  In equilibrium, the sum of the local 
kinetic energy and the local potential energy should be a constant independent of the 
spatial position of the electron. We may choose this constant to be zero since the 
energy is arbitrary up to an additive constant. Thus 

m ( r ,  e ) h 2 / p  = eb(r,  e). ( 4 . 2 )  

Equation ( 4 . 2 )  is the Thomas-Fermi approximation. The potential field c$( r, e )  is 
determined by the two-dimensional Poisson equation: 

( 4 . 3 )  

( 4 . 4 )  

It is seen from ( 4 . 3 )  that a plays the role of the screening length in the two-dimensional 
electron gas. It is a special feature of the two-dimensional Coulomb gas that the 
screening length is a universal constant independent of the density of the gas. The 
many-body screening effects are best embodied in the position dependence of the 
dielectric constant of the gas. If we limit ourselves to the circularly symmetric case, 
E ( r )  is defined by 

( 4 . 5 )  

There is a boundary condition on E ( r ) ,  namely e ( r o )  = 1, where ro is the smallest 
distance of physical significance in the problem. In other words, we require 4 ( r )  to 
be the unscreened two-dimensional Coulomb potential at very short distances: 

4 ( r )  = - e  In(r/ro) r = ro. ( 4 . 6 )  

Equation ( 4 . 6 )  determines the relevant solution of ( 4 . 3 )  to be K o ( r / a ) ,  where K O  is 
the modified Bessel function of order zero [ 1 3 ] .  Consequently the dielectric constant 
is given by 

E ( r )  = -r-Ko(a) d 
= ; K , ( a )  r d r  ( 4 . 7 )  

It can be verified that E ( r )  possesses the desired asymptotic forms: 

lim E ( r )  = 1 

lim e ( r )  = ( .rra/2r)”* exp(-r/a).  

r - 0  

( 4 . 8 )  

The explicit form for E(r) obtained in equation ( 4 . 7 )  is a direct result of the 
Thomas-Fermi approximation. It is not possible to obtain this from the classical 
Kosterlitz-Thouless equations ( 2 . 7 )  and (2.8). However, the physics embodied in the 
Kosterlitz-Thouless equations remains unchanged by the inclusion of quantum effects. 

r - c c  
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5. Summary and concluding remarks 

The properties of the two-dimensional neutral Coulomb gas have been analysed in 
two separate approximations: the one-atom approximation and the Thomas-Fermi 
approximation. The one-atom approximation is applicable at low temperatures to a 
gas of low density in which the interactions among atoms can be neglected. This would 
happen if the interatomic separation determined by the density of the gas is larger 
than the size of the atom in its lowest state. The one-atom approximation shows that 
the gas is an insulator at low temperatures and makes a phase transition to a conducting 
state above a critical temperature. In our approximation, the phase transition is due 
to the thermal ionisation of the atom but it is so similar to the Kosterlitz-Thouless 
transition that the two transitions are very probably the same. Above the transition 
temperature, charges become itinerant and interactions among charges become most 
important. These interactions give rise to screening effects which have been analysed 
in the Thomas-Fermi approximation. The screening length turns out to be a universal 
constant independent of the density of the gas. The screening length is of the same 
order of magnitude as the size of a single atom in its ground state. The screening 
length is a fraction (1.25) larger than the size of the atom in its lowest state. This 
suggests that gases of even moderately high densities may remain insulators at low 
temperatures. There is a possibility that just as a gas of low (fixed) density makes an 
insulator to conductor transition as its temperature is raised, a gas at a fixed temperature 
(say, T = 0) may make an insulator to conductor transition as its density is increased. 
However, we are not in a position to answer this question here because the approxima- 
tions made in our analysis are not appropriate for gases of very high density. 
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